Hall Ticket Number:

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (Mech. Engg.: CBCS) III-Semester Supplementary Examinations, May/June-2018

Metallurgy & Material Science

Max. Marks: 70

Time: 3 hours

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. The grain sizes of two steels are 200 μm and 200 nm respectively. Which one do you expect to have high strength? Provide your reason.
- 2. List the conditions under which ductile to brittle transition takes place.
- 3. State Fick's I law of diffusion and indicate its formula.
- 4. Sketch the S-N curve for a ferrous material and show the endurance limit.
- 5. Show the cooling curve of pure iron and discuss.
- 6. Determine the number of phases that can co-exist in equilibrium at the eutectoid point in the iron iron carbide binary phase diagram.
- 7. Draw transformation diagram for eutectoid steel (0.8%C) and show on it the time temperature path that will produce 100% bainite.
- 8. Outline the heat-treatment necessary to produce martensite.
- 9. Discuss briefly the steps involved in the extraction of aluminium.
- 10. Identify a method by which you can keep the sulphur content in steel to be minimal.

Part-B $(5 \times 10 = 50 \text{ Marks})$

11.	a) Explain the phenomenon of slip and twinning with appropriate sketches.	[5]
	b) Develop an expression to determine the critical resolved shear stress.	[5]
12.	a) With the help of neat sketch, discuss on the variation of creep strain with time.	[4]
	b) Discuss an experimental method for the determination of fatigue strength of a material.	[6]
13.	a) Describe qualitatively the microstructural evaluation upon slow cooling of eutectoid steel.	[5]
	b) Determine amount of phases for a steel of 0.6%C composition at a temperature just below the eutectoid temperature.	[5]
14.	a) Differentiate between annealing and normalizing.	[5]
	b) A flywheel shaft is made from Low Carbon steel and is to be surface hardened. Suggest suitable techniques and elaborate any two of them.	[5]
15.	a) Describe the method of production of copper from its ore.	[5]
	b) Discuss the composition, properties and applications of different types of brasses.	[5]
16.	a) Differentiate between Cold working and Hot working processes.	[5]
	b) Sketch the fatigue fractured specimen. Discuss the cumulative fatigue damage theory.	[5]
17.	Answer any <i>two</i> of the following:	
	a) Discuss the microstructure, properties and applications of Gray Cast iron.	[5]
	b) Al-Cu alloy is widely being used in aerospace industry due to its age hardening properties. Explain the heat treatment procedure typically followed for attaining the age hardening.	[5]
	c) Define composite materials and discuss their applications.	[5]
	୯୫୯୫୪୫୪୪୪	